
J. Fluid Mech. (2010), vol. 645, pp. 295–314. c© Cambridge University Press 2010

doi:10.1017/S0022112009992643

295

Local balance and cross-scale flux
of available potential energy

M. JEROEN MOLEMAKER† AND JAMES C. McWILLIAMS
Institute of Geophysics and Planetary Physics, UCLA Los Angeles, CA 90095-1567, USA

(Received 7 February 2008; revised 30 September 2009; accepted 4 October 2009;

first published online 8 February 2010)

Gravitational available potential energy is a central concept in an energy analysis of
flows in which buoyancy effects are dynamically important. These include, but are
not limited to, most geophysical flows with persistently stable density stratification.
The volume-integrated available potential energy Eap is defined as the difference
between the gravitational potential energy of the system and the potential energy of
a reference state with the lowest potential energy that can be reached by adiabatic
material rearrangement; Eap determines how much energy is available for conservative
dynamical exchange with kinetic energy Ek . In this paper we introduce new techniques
for computing the local available potential energy density Eap in numerical simulations
that allow for a more accurate and complete analysis of the available potential energy
and its dynamical balances as part of the complete energy cycle of a flow. In particular,
the definition of Eap and an associated gravitation disturbance field A permit us to
make a spectral decomposition of its dynamical balance and examine the cross-scale
energy flux. Several examples illustrate the spatial structure of Eap and its evolutionary
influences. The greatest attention is given to an analysis of a turbulent-equilibrium
simulation Eady-like vertical-shear flow with rotation and stable stratification. In this
regime Eap exhibits a vigorous forward energy cascade from the mesoscale through the
submesoscale range – first in a scale range dominated by frontogenesis and positive
buoyancy-flux conversion from Eap to Ek and then, after strong frontal instability and
frontogenetic arrest, in a coupled kinetic-potential energy inertial-cascade range with
negative buoyancy-flux conversion – en route to fine-scale dissipation of both energy
components.

1. Introduction
Lorenz (1955) formalized the concept of available potential energy (APE), which

has proved to be very useful in analyses of energy in the atmospheric and oceanic
general circulations as the appropriate companion to kinetic energy (KE) for weakly
non-conservative dynamical processes (Lorenz 1967; Huang 1998). APE has also
been shown to be a useful quantity for smaller-scale stratified flows (Winters et al.
1995). The concept is applicable to geometrically complex, simply connected domains
(i.e. including topographic variations), and it is useful even in strongly diabatic and
unstably stratified regimes as a means of distinguishing the conservative dynamical
processes from non-conservative ones.

For an incompressible fluid, the domain-integrated APE Eap is defined as the
difference between the total potential energy Ep and the potential energy of a reference
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state E∗
p ,

Eap = Ep − E∗
p = −

∫ ∫ ∫
z (b − b∗) dx dy dz, (1.1)

where g is the gravitational acceleration acting downward in the vertical direction
ẑ and b = g(1 − ρ/ρ0) is the buoyancy field proportional to the density ρ conserved
on fluid parcels in the absence of diffusion or heating or material sources; ρ0 is a
background constant value, and appropriately for incompressible fluid dynamics, we
have normalized all energy densities by ρo; b∗(z) is the reference buoyancy profile that
corresponds to the lowest state of potential energy that can be reached by adiabatic
rearrangement of all the parcels within a bounded domain. Therefore, N2 = ∂zb

∗ � 0
is non-negative, and hence b∗ is not unstably stratified with respect to adiabatic parcel
displacements, even if ∂zb is negative in some places. The unavailable potential energy
is defined by the residual,

Eup = Ep − Eap, (1.2)

which is equivalent to E∗
p . A stably stratified resting state has Eap = 0 and

Eup = Ep = E∗
p .

In analogy with the local KE density, Ek = u2/2 � 0 – and for conservative
dynamical exchanges with it through the vertical buoyancy flux wb (§ 3) – we are
interested in identifying the local APE density Eap � 0 that is integrally consistent
with (1.1),

Eap =

∫ ∫ ∫
Eap dx dy dz, (1.3)

and that has a readily interpretable local dynamical balance equation leading to a
meaningful wavenumber spectral expression analogous to that for KE. The integrand
in (1.1) is not an acceptable choice for local APE density because it is not sign definite.

The dynamical approximations of small-amplitude gravity waves linearized about
a stably stratified resting state and the quasi-geostrophic asymptotic limit (where
buoyancy fluctuations are assumed weak compared with the background stratification)
both have an energy conservation principle with a local potential energy density that
satisfies our requirements for APE density, viz.

Eap =
1

2

(b − b∗)2

N2
� 0. (1.4)

Here b∗(z) is identified with the resting-state stable, time-invariant stratification
(Pedlosky 1987), and the rearrangement of b is assumed to be b∗. However, this
expression is not a valid Eap in more general dynamical regimes with finite-amplitude
differences between b and b∗(z).

Several valid general expressions for the Eap have been proposed (Holliday &
McIntyre 1981; Henyey 1983; Shepherd 1993), inclusive of flows that are unstably
stratified. They all require a determination of b∗(z) by adiabatic rearrangement. An
alternative approach was suggested in Tseng & Ferziger (2001), where a probability
density function of b was used to approximate b∗.

A special case is the situation in which the reference-state stratification profile
b∗ = N0z is linear in z with constant N = N0. Equation (1.4) then provides a valid local
potential energy density and Ep with respect to its conservative exchange with KE,
even for finite-amplitude b−b∗ (e.g. Lindborg 2006). Whether it is a valid APE depends
on whether its rearranged b profile is equivalent to N0z and whether it is quadratic in
fluctuation amplitude in the limit of small buoyancy fluctuations (Shepherd 1993). For
a general b∗(z, t) �=N2

0 z, there is no valid, finite-amplitude Eap form similar to (1.4).
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In this paper we propose an improved technique for estimating b∗ and E∗
ap for

gridded data in a numerical model (§ 2); we adapt the Eap definition of Holliday &
McIntyre (1981) for a more useful local energy balance (§ 3) and its spectral-transform
expression (§ 4); and we interpret the evolutionary influences on Eap for some simple
illustrative situations and for the rotating stratified turbulent-equilibrium state in an
Eady-like vertical-shear flow (§ 5).

While this paper only explicitly addresses sorting procedures on a uniform grid in
a uniform-depth domain, equivalent methods may be used for non-uniform grids
or models with a non-trivial bottom-depth variation. There is no ambiguity in
defining the reference state in any simply connected domain, since all parcels can be
adiabatically rearranged in a global sorting; however, it is easy to imagine a situation
with a shallow sill between two sub-basins in which the full availability of the Eap for
KE conversion is dynamically implausible (e.g. the Strait of Gibraltar between the
Mediterranean and Atlantic).

The generalization of our methods to more general equations of state with
compressibility is challenging. Andrews (1981) extended the Eap definition of
Holliday & McIntyre (1981) to a compressible fluid (inclusive of an ideal gas),
obtaining an expression related to potential density, but the latter has a non-unique
definition in sea water through its dependence on reference pressure (McDougall
1987). Expressions for Eap for sea water exist (Bray & Fofonoff 1981; Reid, Elliot &
Olson 1981), but we are not aware of an appropriate Eap definition.

2. Estimation of the reference state
For most geophysical applications the technique proposed in Winters et al. (1995)

is used for determining b∗ in numerical simulation models. They suggest that a
numerical sorting algorithm can be employed to rearrange parcels, with the densest
fluid assigned to the available grid boxes that have the lowest vertical coordinate.
This method allows for computation of the reference state potential energy density
E∗

p = − z b∗, and therefore Eap , using (1.1).
In Molemaker, McWilliams & Capet (forthcoming), a small modification to the

sorting procedure is introduced that allows for a more accurate determination of
E∗

p . After sorting in three dimensions among the finite number of model grid boxes
as in Winters et al. (1995), a resulting buoyancy field bs(x, y, z) is characterized by
small departures from a horizontally uniform profile. This means that even though
the potential energy Eps of the sorted field is the lowest Ep that can be reached for a
given grid resolution there is still some potential energy available for exchange with
Ek . We can assume that these departures are small relative to the vertical stratification
of both the sorted and uniform states. In fact, the departures are guaranteed to be
smaller than the difference in density between the successive vertical levels. For this
sorted three-dimensional field, the linearized definition of APE (1.4) is quite accurate.
We therefore propose that the APE of the sorted buoyancy field be evaluated using

Eaps =
(bs − bs)

2

2∂zbs

, (2.1)

with the overbar defined as a horizontal average. The APE of the actual buoyancy
field can now be calculated by the amended formula,

Eap = Ep − Eps + Eaps , (2.2)

where Eps is the potential energy of bs and Eaps is the integral of (2.1). In

discrete computations we approximate b∗ by bs . Convergence tests show that the
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approximation (2.2) maintains second-order accuracy with grid spacing. It is compared
with other discrete Eap estimates in § 5.1.

3. APE density and its dynamical balance equation
For definiteness consider the advection–diffusion equation for buoyancy in an

incompressible fluid:

Db

Dt
= μ∇2b, (3.1)

where μ is the diffusion coefficient and D /Dt = ∂t + uuu · ∇ is the substantial derivative.
(The illustrative solutions discussed in § 5 are all based on some form of (3.1).) An
appropriate local expression for Eap is introduced in Holliday & McIntyre (1981) for
a model in which b is a dependent variable and z is an independent variable:

Eap(x, y, z, t) =

∫ b(x,y,z,t)

b∗(z,t)

(
Z[b̃] − Z[b∗]

)
db̃ � 0. (3.2)

Here Z[b] is the inverse function defined by the reference state stratification b∗(z).
For small departures of b(x, y, z, t) from b∗(z), the integrand can be Taylor expanded
and can be explicitly integrated to yield (1.4) with dZ/db (b∗) = N−2. For finite-sized
departures this Eap formula is an appropriate evolutionary companion for Ek in a
local energy conservation principle (Appendix).

Since b∗ is determined from b (§ 2), Eap[b] is an explicit function of b alone (albeit
implicitly a function of (x, y, z, t)). Therefore, we can evaluate a local balance equation
for Eap using the local buoyancy equation together with appropriate functional
derivatives of Eap . This approach is implicit in the balance equations derived in
the Appendix. However, for an energy analysis of a numerical simulation, it is more
accurate – and more readily generalized to more complex model dynamics than (3.1) –
to take an operational approach by performing discrete operations on the discrete
form of the terms in the buoyancy equation than by evaluating the derived energy-
balance terms (e.g. (A 1) in the Appendix) with independent discretizations. Following
the operational approach, we can formally write the local APE evolution equation as

∂Eap

∂t
= Adv [Eap] + Dif [Eap], (3.3)

where Adv and Dif are the effects on Eap of the advection and diffusion operators
in (3.1), respectively. These operators are evaluated by finite-difference functional
derivatives, e.g.

Adv [Eap] =
Eap[b − δ (uuu · ∇)b] − Eap[b]

δ
. (3.4)

The operator Eap in the numerator on the right-hand side is an evaluation of the
APE using (3.2) with the indicated argument. Here, − (uuu · ∇)b is the local buoyancy
advective-tendency operator as evaluated in the discretized numerical model; δ is
chosen to be small but large enough to avoid numerical rounding errors. The simple
difference in (3.4) is chosen for its efficiency of evaluation; although it is only a
first-order scheme accurate in δ, the latter can be chosen to be small enough to
ensure sufficient accuracy. Similarly, for a linear diffusion operator as in (3.1),

Dif [Eap] =
Eap[b + δ μ ∇2b] − Eap[b]

δ
, (3.5)
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where ∇2b is the discrete diffusion operator and μ is the buoyancy diffusivity.
If an alternative small-scale regularization operator is used in place of ∇2 (a
common practice in computational fluid dynamics as a parameterization of unresolved
turbulent mixing processes), it can be evaluated analogously. The same approach can
be taken for any other non-conservative (diabatic) terms in the buoyancy equation
(e.g. the stratification–restoration and wavenumber-one damping terms in § 5.3).

Using these discrete approximations we can evaluate (3.3) at each point in the
domain and analyse the energetic consequences of different terms in the buoyancy
equation in a way that is consistent with the particular discrete operators used in
the integration model for b. A spatial integration of Adv [Eap] and Dif [Eap] over the
whole domain then leads to a global balance equation for Eap and, in particular,
allows the evaluation of the energy conversions with Ek and Eup , the dissipation rate
for APE and the APE boundary fluxes, if any.

4. Spectral analysis of APE balance
In the context of low-frequency, large-scale oceanic circulation, we are particularly

interested in the dynamical routes towards energy dissipation on the microscales
for both KE and APE (Muller, McWilliams & Molemaker 2005; Molemaker
et al., forthcoming). For this we require a spectral analysis of (3.3) to identify the
wavenumber transfer function (i.e. APE cascade). In their present form (3.2) and
(3.3) are not suited for spectral analysis. In particular, the wavenumber spectrum of
a term in the Eap balance equation (3.3) is by definition a positive quantity; yet the
individual terms can be positive or negative to increase or decrease the energy at a
particular location or at a given wavenumber.

For a spectral analysis of the KE density and its balance equation, the common
practice is to use its local quadratic definition, Ek = u2/2 � 0, and to operate on u
and the momentum equation by multiplying their Fourier transforms by the complex
conjugate of the transform of u, i.e. to compute the auto-spectrum of u and the
co-spectra associated with various forces. By convention the spectrum of u is called
the KE spectrum, which is not the same as the spectrum (i.e. square of the magnitude
of the Fourier transform) of local energy density u2/2. Since Eap in (3.2) is positive
semi-definite and has the units (m2 s−2) of a quadratic quantity, we introduce a new
quantity A with units of (m s−1), analogous to the role played by u in Ek :

Eap =
1

2
A2. (4.1)

We call A the gravitational disturbance field, since it is related to the amount of
gravitational energy that is contained in the spatial disturbance of the density field
relative to its reference state b∗ (loosely analogous to the role of the displacement
or extension field in the definition of elastic potential energy). In a small-fluctuation
limit, Eap is given by (2.1); hence A → (b − b∗)/N . More generally, we propose that
A should be defined by

A = sgn[b − b∗]
√

2Eap . (4.2)

With this definition we can rewrite (3.3) as

A∂A
∂t

= A Adv [A] + A Dif [A], (4.3)

where Adv [A] and Dif [A] are calculated analogous to (3.4) and (3.5) (i.e. the
functional derivative now is taken on A rather than for Eap).
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An APE spectrum is then obtained as the power spectrum of A,

Eap(k) =
1

2
[Â(k)]+ Â(k), (4.4)

with Â(k) the Fourier transform of A(x, y, z) and [ · ]+ the complex conjugate.
Spectral versions of the different terms in the energy balance (4.3) are analogously

obtained using co-spectra of Â(k) and the transformed right-hand side terms.
Thus, a simple quadratic factorization of the Eap � 0 definition by Holliday &

McIntyre (1981) yields an evolutionary equation of A that can be manipulated to
provide a spectrally decomposed APE balance. As shown by the examples in § 5
the terms in the A equation are functionally well behaved in spite of its derivation
through division by A. An analogous approach could be taken to other valid Eap

definitions that might be more suitable for models expressed in different dependent
and independent variables (e.g. Henyey 1983; Shepherd 1993).

5. Applications
In this section we present three examples of the spatial structure and evolutionary

behaviour of Eap and its dynamical balance equation. The first example is a tilted,
stratified buoyancy field that spins down to a resting state. This example is used to
compute Eap in several different ways to assess their accuracy. The second example is
an unstable stratification that evolves passively in a specified overturning circulation.
The third example is an application of our APE methodology to complete the
energetics analysis of the turbulent-equilibrium Eady flow otherwise examined in
Molemaker et al. (forthcoming).

5.1. Spin-down of a tilted buoyancy field

Consider the following non-rotating non-hydrostatic non-dimensional quasi-linear
Boussinesq fluid system:

∂t u = −∇φ + ẑb + ∇2u,

∇ · u = 0,

∂tb = −∇ · (ub), (5.1)

where u is a velocity vector (u, v, w); b is the buoyancy; and φ is the normalized
pressure anomaly p/ρ0. The domain is x ∈ [0, 1] × y ∈ [0, 1] × z ∈ [0, 1], and the
boundary conditions are no normal flow and no flux of momentum. This system
is adiabatic, since the buoyancy equation does not include a diffusive term. We define
initial values for the fields (u, b, φ) with u = 0, b(x, y, z) �=0 a tilted, stably stratified
buoyancy field and φ in hydrostatic balance with b. Starting from this motionless
state, flow develops in the (x, z) plane through gravitational acceleration and sloshing.
This creates a non-zero value for Ek by buoyancy-flux conversion (release) of potential
energy. The Ek is subsequently dissipated by viscous diffusion, which is thus a route
to dissipation for the initial-state Eap . The end of this evolution is a return to a
horizontally uniform resting state as t → ∞, where the buoyancy field corresponds to
b∗, the state with the lowest potential energy that can be reached adiabatically.

As a particular case consider an initial buoyancy field with a uniform, tilted spatial
gradient:

b(x, y, z, 0) = γ (z − 0.5) + α(x − 0.5). (5.2)
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Resolution Sorting Fine sorting Amended sorting (2.2) Local definition (3.2)

16 × 16 0.2526 × 10−3 −0.1554 × 10−3 0.0391 × 10−3 0.0300 × 10−3

32 × 32 0.0666 × 10−3 −0.0390 × 10−3 0.0117 × 10−3 0.0100 × 10−3

64 × 64 0.0174 × 10−3 −0.0098 × 10−3 0.0033 × 10−3 0.0030 × 10−3

128 × 128 0.0044 × 10−3 −0.0024 × 10−3 0.0009 × 10−3 0.0008 × 10−3

256 × 256 0.0011 × 10−3 −0.0006 × 10−3 0.0002 × 10−3 0.0002 × 10−3

Table 1. Discrete convergence behaviour for the error in Eap as a function of spatial resolution
for different definitions of Eap in the tilted-stratification example with α = 0.4 and γ = 1. The

truth standard is the analytic value Eap = 6.133 × 10−3, and the error for the weak-fluctuation

definition (1.4) analytic value is E = 0.533 × 10−3. The recommended new techniques are in the
last two columns on the right.

If |α| <γ , the stratification is gravitationally stable everywhere; α 	 γ is the weak-
fluctuation limit.

For system (5.1) the potential energy Ep is calculated as

Ep = −
∫ ∫ ∫

z b db = γ

(
1

3
z3 − 1

4
z2

) ∣∣∣1
0
=

1

12
γ, (5.3)

and the APE is

Eap =
α2

24γ
− α3

120γ 2
. (5.4)

This reduces to the weak-fluctuation expression Eap = α2/24γ for α 	 γ .
In figure 1 Eap is shown for different values of α for a configuration with a 16 × 16

grid. This is a rather coarse grid resolution, but it is chosen to highlight differences
between different numerical approximations of Eap; furthermore, the use of relatively
few vertical levels is common in atmospheric and oceanic modelling. The comparison
standard is (5.4). The method of sorting on the three-dimensional model grid (Winters
et al. 1995) (blue line in figure 1) is noticeably inaccurate even for small values of
α/γ , and it consistently underestimates Eap by neglecting the residual Eap that remains
after the sort. The alternative with a much finer vertical grid (yellow line in figure 1) –
essentially giving each individual three-dimensional grid cell its own vertical level –
consistently leads to an overestimation of Eap . This results from the difference in the
number of vertical levels used for the reference Ep and the current Ep . The weak-
fluctuation formula departs from the finite-amplitude formula quadratically in α/γ

(magenta line in figure 1). The new discrete methods (red and green lines in figure 1)
provide substantially more accurate approximations to the alternatives over a large
α/γ range. Table 1 shows convergence behaviour for all four methods. Shown in the
table are the errors for the different methods relative to the analytical value of Eap

for increasing resolution. From the table, it can be seen that all methods converge
to the analytical value at a rate that is second order in grid resolution. However,
the methods suggested in this paper provide the smallest errors for any given grid
resolution.

Figure 2 shows the results of the time integration with a discretized form of the
set of equations (5.1). A second-order, central-difference scheme is used to advect
the buoyancy field, since it is strictly non-dissipative. Temporal-integration errors are
minimized by using a second-order Adams–Bashforth time-stepping algorithm with
very small time steps. The system is integrated in time until a resting state occurs.
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Figure 1. The Eap for the tilted stratification example for a range of α values and γ =1:
(a) includes the analytically computed value (5.4) (black line), the analytic weak-fluctuation
value (1.4) (magenta line), the value found by sorting on the model grid (blue line), the value
found by redistribution and computation of Eps with a 16-time finer vertical grid (yellow line),
the amended sorting technique (2.2) (red line) and the domain integral of the local definition of
Eap (3.2) (green line); (b) replots the same curves as the differences δEap from the analytically
computed Eap (5.4). The recommended new techniques are the red and green lines.
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Figure 2. Spin-down of the tilted stratification in (5.2): (a) shows the potential energy relative
to the final value as a function of time until the system is at rest. The difference between
initial and final Ep values is the discrete Eap; (b) is a blow-up of figure 1(b) but adds the
results of the time integration of the discrete system as blue symbols for comparison with the
initial-state estimates of δEap .

Figure 2(a) shows the evolution of Ep . Initially the system is at rest. For t > 0, Eap is
converted into Ek , which is subsequently dissipated by viscosity. When the Ep of the
system is at the lowest possible value, there is no more Ep available for conversion,
and the system returns to rest. The Eap of the original state is equal to the difference
between the Ep values in the initial and final states. Oscillations in the evolution of
Ep indicate back-and-forth exchanges between KE and APE. Figure 2(b) is a copy
of figure 1(b) with late-time integration results added (asterisks). The reduction of
Eap realized in the spin-down simulation agrees quite well with the initial estimates
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Figure 3. Initial state for b, Eap and Ψ in the stratified overturning example.

by the new procedures, and they are nearly indistinguishable in this example. They
agree even better with each other than the analytically computed initial value, which
indicates the mutual consistency between the discrete Eap estimates and the discrete
model evolution.

In this adiabatic example there is no exchange between Eap and Eup . Initially the
total potential energy of the buoyancy field is Ep = Eup + Eap . For t → ∞ all Eap has
been converted into Ek and subsequently dissipated, reducing Ep by exactly that
amount. Therefore, throughout the evolution Eup does not change.

5.2. Unstably stratified overturning flow

In this section we present an illustrative example of the local quantities in the new
algorithm for Eap and its evolution. The initial condition is the unstably stratified
buoyancy field,

b(x, z, 0) = 1 − z (5.5)

in a two-dimensional domain (x ∈ [0, 1], z ∈ [0, 1]) with no buoyancy flux through the
boundary. This buoyancy field evolves by the advection–diffusion equation,

∂b

∂t
= − (u · ∇)b + μ∇2b, (5.6)

where the two-dimensional, non-divergent velocity u =(u, 0, w) is prescribed as
constant in time with u = − ∂zΨ , w = ∂xΨ and a stream function specified by

Ψ (x, z) = sin[πx] sin[πz]. (5.7)

The diffusion coefficient is set to the relatively small value of μ = 2 × 10−3. Figure 3
shows the initial b, Eap and Ψ fields; Eap has its maximum values near the upper and
lower boundaries showing the largest difference between the local b and b∗.

Equation (5.6) is integrated numerically in time to a fraction of the turnover time
for the circulation, t = 0.5. The resulting b, Eap and A are shown in figure 4. The
buoyancy field is being swept around by the circulation. As a result of advection by
the steady velocity field, some of the higher buoyancy values are transported upwards,
and the lower ones are transported downwards, reducing both Ep and Eap . In addition
to a reduction of Eap in the integral sense, the Eap field has been rearranged as well.
Figure 4(c) shows the spatial distribution of A. While it has a gross similarity to b,
the field of A in (4.2) is quantitatively rather different, consistent with the definition
of Eap in (3.2).

Figure 5 shows the Eap tendency patterns that result from the advection of b in
(5.6) in the unstably stratified example. Figure 5(a) shows advection of b, which heats
the upper-left corner of the domain and cools the lower-right corner, thus reducing
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Figure 4. Fields of (a) b, (b) Eap (c) and A at t = 0.5 for the stratified overturning example
(figure 3) evolving through advection and diffusion in (5.6).
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Figure 5. Spatial pattern of tendencies that result from the advection of b for the stratified
overturning example in figure 3 at t = 0.5: (a) − (u · ∇)b; (b) Adv [Eap]; (a) w(b − b∗); and
(d ) − (u · ∇)Eap . The advective evolution of Eap is a combination of redistribution of Eap by
u · ∇Eap and conversion of potential energy by w(b − b∗).

Eap overall. Figure 5(b) shows the effect of u · ∇b on the distribution of Eap . This
pattern is not a pure redistribution of Eap because it also reflects the reduction of
Eap by conversion to Ek . The pattern of Adv [Eap] is the combination of (u · ∇)Eap , a
pure spatial redistribution of Eap by the overturning circulation, and w (b − b∗), the
buoyancy-flux conversion of Eap into Ek with extrema in the regions of strong vertical
motion and large deviation of b from the reference profile. These results illustrate
how the distribution of that Eap and its local tendency influences are not merely
mathematical constructs but in fact have a mechanistically interpretable meaning.

Shifting attention to the gravitational disturbance field A, the upper row of figure 6
compares the advection of b, − (u · ∇)b, with the advective influence on A, Adv [A],
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Figure 6. Spatial pattern of tendencies from the advection of b for the stratified overturning
flow at t = 0.5: (a) − (u · ∇)b; (b) Adv [A]; (c) −w(b −b∗)/A; and (d ) − (u · ∇)A. The effect of
advection on A, Adv [A], is the sum of w(b−b∗)/A and − (u · ∇)A to within the second-order
accuracy of the discretizations.

demonstrating their close correspondence for this case. Unlike the relations among
Adv [Eap], w(b − b∗) and − (u · ∇)Eap , the former correspondence is not exact in all
cases. The lower row of figure 6 shows w(b − b∗)/f and − (u · ∇)A, which added
together lead to the pattern of Adv [A].

Further examination of the results shows that

Adv [Eap] + w(b − b∗) = − (u · ∇)Eap (5.8)

within the second-order numerical accuracy of the discretizations used to approximate
(3.2). Furthermore, we find that

Adv [A] − w(b − b∗)/A = − u · ∇A, (5.9)

which follows from the equivalent relation for the advection of Eap and the definition
of A in (4.2).

The diffusive term in (5.6) and its effect on A are now examined. Again, the
evolution of A as a result of ∇2b appears to be closely related to ∇2b itself. The effect
of diffusion on Eap is given by A Dif [A], and for this case it is negative when
integrated over the domain, dominated by regions of Eap destruction near the upper
and lower boundaries. These regions are characterized by larger values of both |∇2b|
and Eap . An expression for the effect of diffusion of b on the evolution of Eap is derived
in the Appendix (see (A 1)). The diffusive term in (A1) are not very straightforward,
and diffusion is not strictly a sink of Eap in all situations (see figure 7).

5.3. Spectral energy balance in an equilibrium Eady flow

Molemaker et al. (forthcoming) analyzed the turbulent-equilibrium state of an
unstable geostrophically balanced vertically sheared horizontal flow with uniform
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Figure 7. Spatial pattern of tendencies that result from the diffusion of b for the stratified
overturning example in figure 3 at t = 0.5: (a) μ∇2b, (b) Dif [Eap] and (c )Dif [A].

background rotation and stable stratification in a horizontally periodic, vertically
bounded domain for solutions of the non-dimensional incompressible rotating non-
hydrostatic Boussinesq equations with viscosity and diffusion. This is the mean flow
analysed by Eady (1949) for its quasi-geostrophic linear baroclinic instability and for
more general linear instabilities by Stone (1966) and Molemaker, McWilliams &
Yavneh (2005). In the turbulent-equilibrium solution the unstable mean flow is
maintained by artificial restoration towards uniform shear and stratification, and
the fluctuations are artificially damped at the domain scale (to absorb an inverse
energy cascade); the associated rate constants are chosen to be small enough to not
overwhelm the advective fluid dynamics. The Rossby and Froude numbers based on
the mean shear flow are chosen to be equal to 0.5, which is small enough so that the
dynamical effects of rotation and stable stratification are important but large enough
so that ageostrophic currents emerge clearly. The first baroclinic deformation radius
is chosen as Lr = 0.1 in a domain with a domain width L =1. The Reynolds number
is as large as computationally feasible.

The fluctuations about the Eady flow during the equilibrium state are a combination
of the following phenomena:

(a) Geostrophically balanced eddies arising from instability of the mean Eady flow,
with a horizontal scale near Lr and significant inverse energy cascade towards larger
scales (as expected in geostrophic turbulence; Charney 1971).

(b) Boundary-intensified buoyancy fronts generated through straining by the
larger eddies, which induce significant buoyancy restratification and generate Ek

on intermediate scales by w′b′ > 0 conversion, with strong local deviations from
geostrophic, hydrostatic balance.

(c) Similarly unbalanced, horizontal-shear instabilities of the fronts that arrest the
frontogenesis at an intermediate scale and further advance the forward KE cascade
towards small-scale dissipation.

In Molemaker et al. (forthcoming) particular attention is given to the energy
balance in the turbulent-equilibrium state and the dynamical route to small-scale,
viscous dissipation of KE. Using a modification of the sorting procedure by Winters
et al. (1995) described in § 2, a domain-integrated Eap balance is included in the
energy analysis, along with a detailed spectral decomposition of Ek and its dynamical
balance. However, a spectral analysis of Eap analogous to Ek is absent. With the
formulas in §§ 3 and 4, we can now complete this analysis and present a complete
view of the total energy as it moves from the mean Eady flow into the eddy and
frontal fluctuations, from fluctuation APE to KE and among different spatial scales
in the fluctuation fields.
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Figure 8. Instantaneous horizontal slices at z =0.9 (in a domain with z ∈ [0, 1]) for (a)
fluctuation buoyancy and (b) Eap from (3.2) in an equilibrium Eady flow. Both fields are
non-dimensional as described in Molemaker et al. (forthcoming) for the case with the Rossby
number Ror = V0/f Lr = 0.5 and the Reynolds number Reeff = V0L/νh = 6600 (with V0 the
vertical velocity difference in the Eady flow, L the horizontal domain size and νh the effective
horizontal viscosity including the effect of numerical diffusion in the advection operator). The
deformation radius is Lr = 0.1.
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Figure 9. Depth-averaged horizontal-wavenumber spectra for Eap (red line) and Ek (black
line) associated with the A and u fields in an equilibrium Eady flow. The blue and green lines
indicate k−5/3 and k−2 power-law shapes.

Figure 8 shows horizontal planes of buoyancy fluctuation and Eap . The eddies are
evident on the larger scale. Intermediate-scale buoyancy fronts occur between the
eddy centres. Some of the fronts also exhibit fine-scale instability. The largest values
of Eap are associated with positive buoyancy extrema in this plane located near the
vertical boundary.

Figure 9 shows the horizontal-wavenumber (Kh =
√

k2
x + k2

y) spectra of KE and
APE, averaged in depth and time during the equilibrium phase. For all wavenumbers
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Ek is larger than Eap (note that the integral values are Ek = 1.40 and Eap = 0.65), but
the spectral shapes are essentially identical. Our provisional interpretation is that the
overall energy ratio is set by the larger-scale (low-wavenumber) eddy dynamics, which
surely does not exhibit an universal behaviour. Homogeneous geostrophic turbulence
(which this is not) has a KE/APE ratio of 2 (Charney 1971), and geostrophic
turbulence in a vertically bounded domain with larger horizontal extent but the same
baroclinic deformation radius Lr would have a much larger APE/KE ratio. The
approximate power-law shapes for the intermediate-wavenumber range Kh ∈ [15, 70]
are suggestively close to an energy inertial-cascade range exponent of −5/3, albeit with
some imprecision owing to the limited grid resolution of the simulation (512 × 512
horizontally). It has proved difficult to realize an exact inertial range in spectrum
shape and spectral flux in computational simulations even in the classical isotropic,
homogeneous problem and even with quite high resolution (Kaneda et al. 2003) but
in general at even higher wavenumbers, of course, the energy spectra steepen because
of viscous and diffusive dissipations.

At larger scales (i.e. in the geostrophic and frontogenetic dynamical regimes;
Molemaker et al., forthcoming), as well as in the small-scale dissipation range, the
spectrum slopes are steeper. In particular, on scales smaller than the first baroclinic
deformation radius at Lr =0.1 (i.e. Khr = 1.6), we see a slope consistent with the K−2

h

submesoscale frontogenesis regime in Capet et al. (2008a), although its wavenumber
range is rather short in the Eady problem as posed here. From this perspective we
interpret the onset of the K

−5/3
h range around Kh = 20 as the high-wavenumber end

of the frontogenesis range in which frontal instability becomes the dominant process
for further forward energy cascade.

Figure 10 (top row) shows the spectral balance of fluctuation KE Ek . At low
wavenumbers a large conversion of energy from potential to KE w′b′ occurs in
association with larger-scale baroclinic instability of the mean Eady flow and finer-
scale frontogenesis. This energy is transferred in wavenumber space by advection
both to the lowest available wavenumber (Kh = 1, where a linear damping term is
active) and to higher wavenumbers en route to viscous dissipation. For horizontal
wavenumbers greater than Kh ≈ 15, the buoyancy-flux conversion of Eap strongly
decreases, and the primary energy balance is between advective energy transfer
among wavenumbers and dissipation. Since the dissipation is concentrated at the
highest wavenumbers, the advective transfer rate is small for the intermediate scales
because of approximately constant energy fluxes (5.10) towards the dissipation range.
A constant-energy-flux range is commonly referred to as an energy inertial-cascade
range (figures 9 and 11). However, in the expanded ordinate range (figure 10, upper-
right panel), we see a weak, negative energy conversion from Ek to Eap that modifies
the simple Kolmogorov concept of a purely KE inertial-cascade range. The negative
sign of this conversion from Ek to Eap is reminiscent of the forward energy cascades in
stratified turbulence measured at the microscale in the oceanic interior (Toole 1998),
where rotational influences are presumed negligible. Within this coupled inertial
range the transfer function is positive for Ek , since it balances losses because of both
dissipation and negative buoyancy-flux conversion.

The bottom row in figure 10 shows the corresponding balance for Eap . It has
direct fluctuation generation by the instability of the mean Eady flow; Eap loss
by conversion mirrors the equal-but-opposite gain in the Ek balance – a positive
conversion in the baroclinic instability and frontogenetic wavenumber ranges and
a negative conversion in the nearly inertial range. The advective spectral transfer
function for Eap is more extensively positive than it is for Ek , beginning at lower
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Figure 10. Time-averaged, horizontal spectral energy balances for the fluctuation fields in
an equilibrium Eady flow. The right panels show an expanded ordinate range zooming
in on the higher wavenumbers. KE balance Ek (top row): conversion of potential energy
w′b′ (red line); transfer function for advective Ek redistribution among wavenumbers (blue
line); Ek dissipation (black line); restoration damping of wavenumber Kh =1 in u (yellow
line). APE balance Eap (bottom row): loss of potential energy by conversion −w′b′ (red
line); transfer function for advective Eap redistribution among wavenumbers (blue line); Eap

dissipation (black line); generation of fluctuations by instability of the mean Eady flow (green
line); restoration of buoyancy fluctuations to the reference state stratification (maroon line);
restoration damping of wavenumber Kh = 1 in b (yellow line). In both balances the dissipation
is due to a combination of explicit diffusion and numerical dissipation associated with the
third-order, upwind-biased advection scheme.

wavenumbers in association with baroclinic instability and frontogenesis. It shows
negative values (suggestive of inverse cascade; see also figure 11) at the largest
scales, but for intermediate wavenumbers the Eap transfer function is positive in
association with frontogenesis (cf., Capet et al. 2008b). However, in the inertial range
for Kh > 15 the transfer function is small, as the negative buoyancy-flux conversion
(which appears as a positive term in the Eap balance) balances the dissipation. At
the highest wavenumbers (Kh > 70), the negative conversion abates, and an advective
transfer function balances further dissipation.

An examination of the spectra of the terms in the vertical momentum balance
shows that the gravitational force ẑb contributes significantly to the dynamical
balance of the fluctuations throughout the energy inertial-cascade range up to the
onset of the dissipation range. This further indicates (in addition to the negative
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conversion throughout this range) that the advective forward cascades in Ek and Eap

are dynamically coupled with each other.
The spectral fluxes of of Ek and Eap in figure 11 are obtained by integrating the

advective transfer functions in horizontal wavenumber Kh space:


k (Kh) =

∫ Kh

0

Adv [Ek ] dKh,


ap(Kh) =

∫ Kh

0

(Adv [Eap] + [ŵ]+b̂) dKh. (5.10)

Figure 11 clearly shows forward fluxes for both Ek and Eap at most Kh, including
forward flux even at the domain scale for Eap (though inverse flux for Ek there).
The magnitude of the forward flux is larger for Ek than for Eap , reflecting the fact
that there is more overall Ek than Eap in the fluctuations on the intermediate scales.
Consistent with figure 10, the forward flux of Eap shows a rather flat curve for 
ap

between wavenumbers 10 and 70, consistent with an inertial-cascade range. The 
k

is not quite as flat over this range, although its variations are only around 10 %;
its decrease towards the dissipation range starts are smaller values Kh than for 
ap

because of their dissipation curves in figure 10).
A similar forward-flux, inertial-cascade range in both Ek and Eap is shown in

Lindborg (2006) and Lindborg & Brethouwer (2007) for randomly forced non-
rotating stratified turbulence (with a uniform background stratification N0 posed so
that the Ep is also an Eap); it spans a somewhat larger wavenumber range than here.
Within this range it has approximately the same Ek/Eap ratio as here, the same −5/3
spectrum power-law exponents, an extensive negative buoyancy-flux conversion (i.e.
from Ek to Eap) and a nearly constant spectral flux 
(Kh) for Eap compared with a
modestly decreasing one for Ek . This suggests there may be a simple phenomenological
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Figure 12. Sketch of energy pathways in an equilibrium Eady flow. Dissipation is depicted as
important only at large and small scales; the former is conceived of as a ‘Rayleigh’ process in
which the dissipation rate is proportional to spectrum amplitude that peaks at large scale and
the latter as a ‘Newtonian’ process in which it peaks at small scale. The negative buoyancy-flux
conversion in the coupled forward-cascade range is not included because of uncertainty about
its asymptotic behaviour as Re → ∞.

continuity in the turbulent cascades, as the rotational dynamical control decreases
with increasing k in a ∼ k−5/3 spectrum range. However, to demonstrate this transition
in simulations would require a broader range of resolved scales than has yet been
achieved. In our simulation the rotational influence remains dynamically significant
for all resolved scales. Furthermore, Riley & Lindborg (2008) interprets a variety of
atmospheric and oceanic measurements as consistent with the stratified (and perhaps
in some cases rotationally influenced) inertial-cascade range.

The derivation of a spatially local, spectrally decomposable Eap balance (§§ 1–4 and
the Appendix) cannot be extended to Ep and hence not to the residual quantity Eup .
Nevertheless, all of the forms of potential energy have well-defined integral balances
that we will now summarize for completeness. Consistent with the lower row in
figure 10, the integral balance for Eap consists of a source by mean flow instability
(at a mean rate of +0.15 in the non-dimensional units used in figure 6 of Molemaker
et al., forthcoming), balanced by buoyancy-flux conversion to KE (−0.06), mean
restratification (−0.06), Kh = 1 restoration (−0.02) and diffusive dissipation (−0.01).
The integral balance for Ep is mainly loss by restratification (−0.06) and gain by restor-
ation to the mean buoyancy profile (+0.06), with only a very weak source from vertical
diffusion (+0.003); it has no direct energy exchange with Ek through the instability of
the mean Eady flow. Thus, the integral balance for Eup , determined by residual between
Ep and Eap balances, is gain by restoration (+0.12), loss by mean instability (−0.15)
and gains by Kh =1 restoration and diffusion (+0.02 and +0.01), with no contribution
from buoyancy-flux conversion. Finally, the Ek balance (figure 6 of Molemaker et al.,
forthcoming) is a gain from conversion of potential energy (+0.057) and losses by
Kh = 1 restoration and fine-scale dissipation (−0.03 and −0.03, respectively).

On the basis of the spectral energy balances in figure 10, a summary diagram for
the pathways for fluctuation energy from large-scale Eap generation by mean-flow
instability to fine-scale diffusive dissipation (and Kh =1 restoration damping) is
presented in figure 12. From our simulations with a finite Reynolds number and
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grid resolution, we feel confident about the asymptotic validity of the coupled
forward-cascade inertial range in Ek and Eap , although we remain agnostic about
whether the negative buoyancy-flux conversion in this range would continue
indefinitely in Kh as Re → ∞.

6. Summary
We have introduced two new techniques for calculating gravitational APE. The

first technique (§ 2) is a simple modification of the volumetric buoyancy sorting
procedure in Winters et al. (1995); it allows for a much more accurate evaluation of
the domain-integrated APE in discretized numerical models. It takes advantage of the
fact that while the weak-fluctuation approximation for Eap in (1.4) may not be accurate
for the actual buoyancy field, it is highly accurate for the reference buoyancy field
obtained by a three-dimensional sorting procedure. The second new technique builds
on the local definition of Eap in Holliday & McIntyre (1981). After using the improved
sorting procedure to obtain a reference profile of buoyancy b∗(z), this local definition
is used to calculate the distributions of Eap and its quadratic factor, the gravitational
disturbance field A. Evolution equations for Eap and A are calculated with discrete
consistency with the dynamical evolution of the buoyancy b in numerical simulations.

Local balances are mechanistically interpreted in terms of advective rearrangements
of Eap and A, conversion with KE by vertical buoyancy flux wb and rearrangement
and dissipation associated with buoyancy diffusion. Simple illustrations are presented
for the non-rotating, viscous spin-down of an initially tilted buoyancy field to a state
of rest with the reference profile b∗(z) and for the effect of an overturning circulation
on an initially unstable stratification.

The definition of A allows the calculation of the spectrum of Eap and its dynamical
balance equation, which in turn makes it possible to construct a complete picture of
the fluctuation energy budget for both its kinetic and potential components. In
an equilibrium Eady flow on scales smaller than the primary energy generation by
baroclinic instability of the mean circulation, there is a buoyancy-flux conversion from
Eap to Ek associated with frontogenesis down to a scale set by frontal instability and
frontogenetic arrest. On even finer cascades there are coupled inertial-cascade ranges
with forward fluxes of both Eap and Ek down to their dissipation at small scales,
with spectrum exponents close to −5/3, nearly constant spectral fluxes and a negative
conversion from Ek to Eap . The characteristics of this rotating inertial range coincide
with those previously shown for non-rotating, strongly stratified turbulence (Lindborg
2006; Lindborg & Brethouwer 2007), indicating the possibility of a continuous route
to dissipation for APE in the general circulations of the atmosphere and ocean.

The new techniques make possible the study of energy balances and cross-scale
transfers in both Ek and Eap in computational simulations for all flows with buoyancy
effects.

We appreciate discussion with Erik Linborg and Greet Brethouwer about their
simulations of stratified turbulence. We thank a reviewer for advocating the
desirability of the Appendix. This research was supported by the National Science
Foundation through grants OCE 02-21177, OCE 03-36755 and OCE-0550227.

Appendix. Local energy balance
Consider the non-hydrostatic, incompressible Boussinesq equations with viscosity ν

and buoyancy diffusivity μ and a reference profile b∗(z, t) obtained from b(x, y, z, t)
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by instantaneous adiatatic rearrangement. The substantial derivative of Eap in (3.2)
is

DEap

Dt
= (Z[b] − Z[b∗])

Db

Dt
−

(
Z[b∗] − Z[b∗]

) Db∗

Dt
−

∫ b

b∗

dZ
db

[b∗]
Db∗

Dt
db̃

= μ(Z[b] − Z[b∗])∇2b − (b − b∗)
dZ
db

[b∗]

(
∂b∗

∂t
− w

∂b∗

∂z

)

= − w(b − b∗) − (b − b∗)
dZ
db

[b∗]
∂b∗

∂t

+ μ

(
∇ · ( (Z[b] − Z[b∗])∇b) − dZ

db
[b] (∇b)2 +

∂b

∂z

)
. (A 1)

The middle right-hand-side term on the first line evidently vanishes, and we have
made use of (3.1) and the identity

dZ
db

[b∗]
∂b∗

∂z
= 1. (A 2)

The right-hand side terms are the buoyancy-flux conversion to KE, an exchange
because of the evolution of the reference state b∗(z, t) and a diffusion effect that is
partly sign definite and dissipative since dZ/db � 0. In the simple case of (3.1) the
evolution of b∗ is only due to diffusion. Thus, we identify the −u · Eap transferred
from the left-hand side of (A 1) and the buoyancy-flux conversion as the advective
influences Adv [Eap] and the second and third right-hand-side terms as the diffusive
influences Dif [Eap] in the local APE balance.

The companion local KE balance equation is derived in a familiar way by taking
the product of u with the momentum equation:

DEk

Dt
= w(b − b∗) − ∇ · ( (p − p∗)u) + ν( ∇ · ( u · ∇u) − (∇u)2 ). (A 3)

The first right-hand-side term is buoyancy flux conversion with the opposite sign as
in (A 1); the second term is pressure flux divergence (p − p∗ is the excess pressure in
the terminology of Holliday & McIntyre 1981, where p∗(z, t) is in hydrostatic balance
with b∗); and the third term is a viscosity effect that is partly sign definite and
dissipative.

For μ = ν = 0 and an invariant reference profile b∗(z), the local energy balance
simplifies to

D

Dt
(Ek + Eap) = −∇ · ( (p − p∗)u),

which is equivalent to (2.11) in Holliday & McIntyre (1981).
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